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Abstract

The dynamic stability of negative-velocity feedback control of piezoelectric composite plates using a finite element

model is investigated. Lyapunov�s energy functional based on the derived general governing equations of motion with

active damping is used to carry out the stability analysis, where it is shown that the active damping matrix must be

positive semi-definite to guarantee the dynamic stability. Through this formulation, it is found that imperfect collo-

cation of piezoelectric sensor/actuator pairs is not sufficient for dynamic stability in general and that ignoring the in-

plane displacements of the midplane of the composite plate with imperfectly collocated piezoelectric sensor/actuator

pairs may cause significant numerical errors, leading to incorrect stability conclusions. This can be further confirmed by

examining the complex eigenvalues of the transformed linear first-order state space equations of motion. To overcome

the drawback of finding all the complex eigenvalues for large systems, a stable state feedback law that satisfies the

second Lyapunov�s stability criteria strictly is proposed. Numerical results based on a cantilevered piezoelectric com-

posite plate show that the feedback control system with an imperfectly collocated PZT sensor/actuator pair is unstable,

but asymptotic stability can be achieved by either bonding the PZT sensor/actuator pair together or changing the ply

stacking sequence of the composite substrate to be symmetric. The performance of the proposed stable controller is also

demonstrated. The presented stability analysis is of practical importance for effective design of asymptotically stable

control systems as well as for choosing an appropriate finite element model to accurately predict the dynamic response

of smart piezoelectric composite plates.
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1. Introduction

Smart flexible structures often consist of thin components such as beams, plates and shells that have been

fabricated from composite materials interlaced with layers of piezoelectric ceramic films. In addition to the
high stiffness-to-weight ratio and strength-to-weight ratio (Reddy, 1997), the advantages of using composite

materials in smart structures include the ability to tailor the structure (Matthews et al., 2000) (such as in the

aero-elastic sense) and design the stiffness and strength of the laminate so as to keep the ratio of strength to

weight maximum. Due to the superior mechanical properties of composite materials and the sensing and

actuating capability of smart materials, the integration of composite structural design with the intelligent

system design would potentially enhance the performance of smart flexible structures (Wang, 2002). This

promising aspect has triggered intense research interests in composite structures bonded or embedded with

piezoelectric sensors/actuators.
Exact solutions for two-dimensional analysis of a piezoelectric composite plate were presented by Ray

and his co-workers (Ray et al., 1993, 1998) with exact solutions for static and dynamic analysis of a

rectangular composite plate integrated with distributed piezoelectric actuators/sensors. Simple boundary

conditions were considered and the displacement and the electric potential functions were initially assumed

to have a sinusoidal component. For general composite structures with complicated boundary conditions,

approximate numerical technique, such as the finite element (FE) method, is necessary. FE models based on

Hamilton�s variational principle for piezoelectric composite beams and plates have been provided by Tzou

and Tseng (1990), Hwang and Park (1993), Lam et al. (1997) and Wang et al. (2001). The elements used in
these works include the brick element (Tzou and Tseng, 1990), discrete Kirchhoff quadrilateral (DKQ)

element (Hwang and Park, 1993), the rectangular non-conforming plate bending element (Lam et al., 1997),

and isoparametric quadratic element (Wang et al., 2001). The best element to use seems to be problem

dependent as each has its own advantages and disadvantages with respect to accuracy, simplicity, speed of

convergence and computational cost.

In controlled structures, dynamic stability is of crucial importance in practice (Kwon and Bang, 1997).

However, this issue has yet to be fully addressed in most of the models in the open literature for smart

composite plates, where it is usually taken for granted that the dynamic system under consideration is
asymptotically stable. In the analytical model of Hanagud et al. (1992) and the FE model of Hwang et al.

(Hwang and Park, 1993; Hwang et al., 1994), in-plane displacements of the midplane have been neglected,

but its consequence with respect to the dynamic stability of a negative-velocity feedback control system has

not been studied. The classical negative-velocity feedback control theory requires the sensors and actuators

to be collocated to guarantee the dynamic stability (Kwon and Bang, 1997), although in practice non-

perfectly collocated sensors/actuators are often used to avoid the non-linearity that arises from the inter-

actions between actuating and sensing signals (Chen et al., 1996) when the piezoelectric materials are used

for both sensing and actuating to meet the collocation requirement. In fact, many researchers have con-
sidered a sensor bonded at the top surface and an actuator bonded at the same location but on the bottom

surface of the host plates as being collocated (Tzou, 1993; Hwang and Park, 1993; Hwang et al., 1994; Lam

et al., 1997; Liu et al., 1999; Lim et al., 1999; Kekana, 2002). This is actually different from the perfect

collocation requirement and the question of whether such imperfect collocation, which leads to an asym-

metric active damping matrix (Lim et al., 1999), can guarantee the dynamic stability has not been properly

answered. This dynamic instability issue was first numerically reported by Wang et al. (2001), in which a

continuously distributed, imperfectly collocated piezoelectric sensor/actuator pair on a cantilevered com-

posite plate induces some in-plane displacements causing the control voltage to diverge after some time.
However, no rigorous theoretical explanation to this phenomenon and practical remedy to design stable

control systems were provided.

The objective of this paper is to present the dynamic stability analysis of active vibration control of

piezoelectric composite plates using the negative-velocity feedback control law. By using the formulation in
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(Wang et al., 2001), the stability analysis is performed based on a proposed Lyapunov�s energy functional

and the active damping matrix is examined in order to guarantee the dynamic stability. The significance of

the in-plane displacements of the midplane with respect to dynamic stability is highlighted. To further

confirm the results, the complex eigenvalues of the transformed linear first-order state space equations of
motion will be examined. As complex eigensolution of large systems can be a formidable task, a stable state

feedback law that satisfies the second Lyapunov�s stability criteria strictly is proposed. The importance and

effectiveness of the dynamics stability analysis will be demonstrated numerically.
2. Formulation of the piezoelectric FE model

The governing equations of motion for a piezoelectric composite plate were formulated in (Wang et al.,
2001), assuming that: (a) the composite plate is thin or moderately thick and piezoelectric sensors/actuators

are integrated into the laminated composite substrate as plies; (b) the laminate is perfectly bonded, elastic

and orthotropic in behavior (Kekana, 2002) with small strains and displacements; (c) piezoelectric sensors/

actuators are made of homogenous and isotropic dielectric materials (Cheng, 1989) and high electric fields

and cyclic fields are not involved (Ehlers and Weisshaar, 1990).

Based on these assumptions, a linear constitutive relationship is adopted for the piezoelectric composite

plate, which can be expressed as (Tzou and Tseng, 1990)
r ¼ Ce� eTE; ð1Þ

D ¼ eeþ gE; ð2Þ
where r represents the stress vector, C the elasticity matrix, e the strain vector, e the piezoelectric constant

matrix, E the electric field vector, D the electric displacement vector, and g the dielectric constant matrix.

The magnetically static electric field vector E in the LPCE is related to the electric potential vector / by

using a gradient vector r as
E ¼ �r/: ð3Þ
Using Hamilton�s variational principle (Hwang and Park, 1993), Wang (2002) derived the governing

equations of motion of the piezoelectric composite plate in terms of the global coordinates with the

standard procedure of the FE method as follows:
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where eUU, eUUs and eUUa are the global coordinates representing the global generalized mechanical displace-

ments, the global electric potentials of the piezoelectric sensors and actuators, respectively, Muu the con-

sistent mass matrix, Kuu the global stiffness matrix, Kus and Kua the global electromechanical coupling

matrix of the piezoelectric sensors and actuators, respectively, Kss and Kaa the global dielectric stiffness

matrices of the piezoelectric sensors and actuators (Samanta et al., 1996), respectively, F the global external

mechanical forces, and Q the global external surface charges of the piezoelectric actuators (Wang, 2002).
These matrices are defined in Appendix A. By condensing the potentials of the piezoelectric sensors in

Eq. (4), the governing equations of motion can be re-written as
Muu
€eUUeUU þ K0

eUU ¼ Fþ Kua
eUUa; ð5Þ
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where
K0 ¼ Kuu þ KusK
�1
ss Ksu: ð6Þ
The sensor output can be obtained in an alternative way by using the charge output of each electroplated

sensor (Hanagud et al., 1992; Hwang and Park, 1993; Hwang et al., 1994; Samanta et al., 1996; Kwon and

Bang, 1997; Lam et al., 1997; Saravanos et al., 1997; Lam and Ng, 1999; Wang et al., 2001; Wang, 2002).

According to Eq. (4), the output electric charge vector Qs of the piezoelectric sensors can be written (Wang

et al., 2001; Wang, 2002) as
Qs ¼ Ksu
eUU ð7Þ
and thus the output voltage vector Uc of the charge amplifiers can be obtained by choosing a proper electric

circuit (Samanta et al., 1996; Hanagud et al., 1992) as
Uc ¼ Gc

dQs

dt
¼ GcKsu

_eUUeUU; ð8Þ
where Gc is a diagonal matrix of the constant gains of the corresponding charge amplifiers. Based on the
charge output of the piezoelectric electroplated sensors, a negative-velocity feedback control system can be

established (Hanagud et al., 1992; Hwang and Park, 1993; Hwang et al., 1994; Samanta et al., 1996; Lam

et al., 1997; Kwon and Bang, 1997; Saravanos et al., 1997; Lam and Ng, 1999; Liu et al., 1999; Wang et al.,

2001; Wang, 2002). In this output feedback control system, a constant symmetric gain matrix G (usually

diagonal) is used to couple the output of the piezoelectric sensors and the input of the piezoelectric

actuators with a change of the sign of the polarity as
eUUa ¼ �GUc: ð9Þ

Substituting Eq. (8) into Eq. (9) yields
eUUa ¼ �G0Ksu
_eUUeUU; ð10Þ
where G0 ¼ GGc is the symmetric generalized gain matrix. Substituting Eq. (10) into Eq. (5), the governing

equations of motion with active damping can be obtained as
Muu
€eUUeUU þ CA

_eUUeUU þ K0
eUU ¼ F; ð11Þ
where the piezoelectric active damping matrix CA, which is the contribution of the rate feedback (Hanagud

et al., 1992), is given by
CA ¼ KuaG0Ksu: ð12Þ
3. Dynamic stability analysis

Dynamic stability is of crucial importance for a controlled dynamic system (Kwon and Bang, 1997;

Janocha, 1999). Unstable systems cannot be put into use in practice. The notion of dynamic stability

implies that, after a bounded disturbance, the state variables of the system remain bounded, i.e. they stay

within a defined space around a selected state (or even approach this state asymptotically). In this study, the

second Lyapunov�s stability theory is used to investigate the stability of the output feedback control and to

design an unconditionally stable robust controller and the complex eigensolution method is used to
examine the stability of those systems of which the dynamic stability cannot be guaranteed by the second

Lyapunov�s stability criteria.
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3.1. Lyapunov’s stability criteria

By pre-multiplying Eq. (11) by ð _eUUeUUÞT and integrating it with respect to the time t and omitting the

external forces F, which can be considered as bounded (Kekana, 2002; Kwon and Bang, 1997) and thus
does not affect the stability analysis, an energy flux equation is obtained as follows:
Z

t

_eUUeUUT
Muu d

_eUUeUU þ
Z
t

eUUTK0 deUU þ
Z
t

_eUUeUUT
CA

_eUUeUU dt ¼ 0 ð13Þ
and thus a Lyapunov�s energy functional L may be taken as
L ¼
Z
t

_eUUeUUT
Muu d

_eUUeUU þ
Z
t

eUUTK0 deUU ¼ 1

2

_eUUeUUT
Muu

_eUUeUU�
þ eUUTK0

eUU�
: ð14Þ
Substituting Eq. (13) into Eq. (14) yields
L ¼ �
Z
t

_eUUeUUT
CA

_eUUeUU dt: ð15Þ
Hence, the time derivative of the Lyapunov�s energy functional L is:
_LL ¼ � _eUUeUUT
CA

_eUUeUU: ð16Þ

According to the second Lyapunov�s stability theory (Kwon and Bang, 1997), the dynamic stability can be
guaranteed if _LL6 0 and thus CA must be positive semi-definite. Furthermore, asymptotic stability can be

guaranteed if _LL remains negative except for the equilibrium point (
_eUUeUU ¼ 0) and thus CA must be positive

definite. Since the Lyapunov�s functional L is based on the energy of the system, its time derivative _LL in

Eq. (16) represents the energy flux of the system. According to the active damping matrix in Eq. (12), it can

be inferred that for an asymptotically stable system, to increase the control gain G leads to the _LL larger in

magnitude and negative in sign so that the system energy can be extracted more rapidly. Therefore, for an

asymptotically stable system, the higher the control gain, the faster the decay of the vibration. Based on the

Lyapunov�s stability criteria, the dynamic stability of the output feedback control system in Eq. (11) is to be
investigated next.

3.2. Dynamic stability of the output feedback control system

If each piece of piezoelectric material is used for both sensing and actuating, then each piezoelectric

sensor/actuator pair can be regarded as perfectly collocated (Chen et al., 1996). In this case, we have
Ksu ¼ Kau ¼ KT
ua: ð17Þ
Substituting Eq. (17) into Eq. (12) yields
CA ¼ KuaG0K
T
ua: ð18Þ
Hence, CA will be positive semi-definite in general or positive definite if KT
ua is an n� m matrix of rank

n < m. Therefore, the dynamic stability can be guaranteed and furthermore, asymptotic stability can also be

guaranteed if the dynamic characteristics of the self-sensing actuators are properly selected. This is con-

sistent with the stability requirement of the classical negative-velocity feedback control that the sensors and

actuators must be collocated and have perfect dynamic properties (Preumont, 1997).

However, significant non-linearities would exist in this controlled system due to the interactions between

actuating and sensing signals (Chen et al., 1996). To minimize such non-linearities,, in practice, two sep-
arate, but very close to each other, pieces of piezoelectrics are often used and even considered as an

approximate collocation (Ang et al., 2002; Wang, 2002). As a further approximation, piezoelectric sensor/
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actuator pairs bonded at the top and bottom surfaces of the host structure, respectively, have also been

considered as collocated by many researchers in their models (Hanagud et al., 1992; Hwang and Park, 1993;

Hwang et al., 1994; Samanta et al., 1996; Lam et al., 1997; Saravanos et al., 1997; Lam and Ng, 1999; Liu

et al., 1999; Kekana, 2002). Stability investigation of such approximations is therefore of practical
importance.

According to Eq. (12), it can be concluded that in general, the active damping matrix CA will not be

positive semi-definite and thus the dynamic stability cannot be guaranteed if the piezoelectric sensor/

actuator pairs are not perfectly collocated. As a demonstration, investigation into the active damping

matrix CA is performed on a dynamic system with a single piezoelectric PVDF or PZT sensor/actuator pair

bonded or embedded along the thickness of a composite plate. As shown in (Wang et al., 2001; Wang,

2002), the active damping matrix CA for a typical piezoelectric quadratic isoparametric element can be

written as
CA ¼ G0 f a
1 f a

2 � � � f a
8½ �T ks1 ks2 � � � ks8½ �; ð19Þ
where the product of the diagonal submatrices ff a
l g½ksl �ðl ¼ 1; 2; . . . ; 8Þ is given by
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in which f a
l , k

s
l , A

x
l and Ay

l are defined in Appendix B zs0 and za0 the coordinates of the sensor and actuator
along the thickness direction, respectively.

If the sensor and actuator are bonded at the top and bottom surfaces of the composite plate, respectively,

Eq. (20) turns out to be
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It can be inferred from Eq. (20) that the diagonal submatrices of the active damping matrix are not

symmetric due to the so-called asymmetric stretching–bending coupling effect of the piezoelectric sensor/

actuator pair (Wang et al., 2001) and thus the active damping matrix will not be positive semi-definite.

Therefore, the dynamic stability of this feedback control system, as used in (Hanagud et al., 1992; Hwang

and Park, 1993; Hwang et al., 1994; Samanta et al., 1996; Lam et al., 1997; Saravanos et al., 1997; Lam and
Ng, 1999; Liu et al., 1999), cannot be guaranteed.

Furthermore, if the corresponding in-plane displacements of the midplane of the plate are not allowed by

the boundary conditions, such as in the cases of simply-supported plates or clamped plates, the product of

the diagonal submatrices in Eq. (20) reduces to symmetric submatrices given by
ff a
l g½ksl � ¼

0 0 0

0 zs0z
a
0ðAx

lÞ
2 zs0z
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0 zs0z
a
0A

x
lA

y
l zs0z

a
0ðA

y
lÞ

2

2
4

3
5 ð22Þ
and the corresponding active damping matrix CA will be positive semi-definite. Hence, the dynamic stability

can be guaranteed. Similarly, if the in-plane displacements of the midplane of the plate are omitted for the
purpose of simplicity, which was assumed by most of the analytical models such as in (Hanagud et al.,
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1992) and some of finite element models such as in (Hwang and Park, 1993; Hwang et al., 1994), the

dynamic stability of this simplified dynamic system can also be guaranteed, however, according to the

present study, this conclusion is not justified since it does not hold true for the original system without this

simplification and it can be expected that significant errors will be caused if the original dynamic system is
actually unstable, as demonstrated later in Section 4.

Therefore, the dynamic stability of an output feedback control system using non-perfectly collocated

sensor/actuator pairs cannot be guaranteed. To ensure the dynamic stability of such a system, strict stability

analysis becomes necessary and thus a complex eigensolution method is next introduced.

3.3. Complex eigensolution method

The governing equations of motion Eq. (5) in the absence of exogenous disturbance (F ¼ 0) and the

sensor equation (8) can be transformed into the first-order linear state space form as follows:
_xx ¼ Axþ Bu; ð23Þ

y ¼ Cx; ð24Þ
where x ¼ ½eUU _eUUeUU�T is the state variable vector, y ¼ Uc the output voltage vector, u ¼ eUUa the actuator input

voltage vector, and the system matrix A, input matrix B and output matrix C are given in Appendix B.

Hence, the output feedback controller in Eq. (9) can be expressed as
u ¼ �GCx: ð25Þ
Substituting Eq. (25) into Eq. (23) yields
_xx ¼ ðA� BGCÞx ð26Þ
and thus a characteristic equation is obtained as follows:
jkI� ðA� BGCÞj ¼ 0; ð27Þ
to which the solution k is actually the complex eigenvalue of the (A� BGC) matrix. According to the

dynamic stability theory (Kwon and Bang, 1997), a sufficient and necessary condition for the dynamic

stability is that all the complex eigenvalues are with non-positive real parts. Furthermore, a sufficient and

necessary condition for the asymptotic stability is that all the complex eigenvalues are with negative real

parts.

Hence, the determination of all the complex eigenvalues would play a central role in the dynamic sta-

bility analysis. However, the procedure to calculate all the complex eigenvalues of Eq. (27) is prohibitively
expensive and numerically formidable for large problems in general. In fact, this numerical calculation

procedure is not needed for a feedback control system that satisfies the Lyapunov�s second stability criteria

strictly (Kekana, 2002; Kwon and Bang, 1997). Therefore, such a robust controller would be more desirable

in practice and is thus presented next.

3.4. Robust feedback controller design

A negative-velocity feedback controller may be taken as
eUUa ¼ �G0Kau
_eUUeUU: ð28Þ
This is one of the simple ways to design a robust controller. Comparing Eq. (28) with Eq. (10), it can be
found that this is a state feedback controller, rather than an output feedback controller, since the output of

the piezoelectric sensors Uc is not used directly to construct the input vector eUUa. However, if the paired
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sensors and actuators are bonded together, it can be approximated that Kau ¼ Ksu since the thickness of the

piezoelectric layers is usually two to three orders less than that of the substrate (Samanta et al., 1996), and

in this case the output of the piezoelectric sensors can be used to construct a stable controller. More

generally, in order to achieve this feedback control, all the feedback control states
_eUUeUU must be accessible and

thus the dynamic system must be observable.

Substituting Eq. (28) into Eq. (5), the active damping matrix can be obtained as
CA ¼ KuaG0Kau: ð29Þ

Hence, CA will be positive semi-definite in general or positive definite if Kau is an n� m matrix of rank

n < m. Therefore, the dynamic stability can be guaranteed and furthermore, asymptotic stability can also be

guaranteed if the piezoelectric actuators are properly configured.
4. Numerical results and discussion

The numerical example used in (Lam et al., 1997) is adopted to demonstrate the importance of the
present dynamic stability analysis and effectiveness of the present design strategies of stable systems. As

shown in Fig. 1, the piezoelectric composite plate (Lam et al., 1997) consists of four composite substrate

layers and two outer PZT layers bonded at the top and bottom surfaces of the substrate serving as sensor

and actuator, respectively. The stacking sequence of the substrate is antisymmetric angle-ply [)45�/45�/
)45�/45�]. The substrate is made of T300/976 graphite-epoxy composite and the piezoelectric layers are

made of PZT G1195N and their corresponding material properties can be found in (Lam et al., 1997). It is

assumed that the vibration of the plate is excited by a suddenly removed vertical load 1N initially applied at

the tip point A, which is in the midplane of the plate.

4.1. Unstable negative-velocity feedback control

The time histories of the tip deflection at point A and the input voltage of the piezoelectric actuator when
using the output feedback control law in Eq. (9) are shown in Figs. 2 and 3, respectively. As expected, when

the control gain is zero, the input voltage of the actuator will be zero too so that the free vibration will not

decay since the passive structural damping is not considered in the present study. Increasing the generalized

control gain leads to the divergence in the response of the tip deflection and more significantly the input

voltage. This illustrates the instability of the feedback control system. This conclusion can be further
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Fig. 1. The geometry of a piezoelectric composite plate.
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Fig. 2. Time history of the deflection of the tip point A of the piezoelectric composite plate.
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verified by computing the complex eigenvalues in Eq. (27). Table 1 gives only the complex eigenvalues of

the first five modes of this dynamic system. Note that the second and fifth complex eigenvalues are always
with positive real part when the control gain is not zero, which verifies that the dynamic system is not

stable. This phenomenon can also be partially attributed to the fact that bonding the sensor/actuator pairs

at the top and bottom surfaces, respectively, is not a sufficient condition for the dynamic stability, as

discussed in detail in Section 3.2. This phenomenon was not reported by Lam et al. (1997) or an earlier

work by Tzou (1993), since both of them changed their output feedback control law into a tip point velocity

feedback law to predict the response. The latter is different from their formulations based on the output

feedback control law and adds the extra requirement of introducing a point velocity sensor.

In the analytical model of Hanagud et al. (1992) and the finite element model of Hwang and Park (1993)
and Hwang et al. (1994), in-plane displacements of the midplane have been neglected. By adopting this

simplification, the time histories of the tip deflection at point A and the input voltage of the piezoelectric

actuator of this altered dynamic system are shown in Figs. 4 and 5, respectively. It can be seen that the

dynamic response will decay with a moderate control gain and thus the results suggest that the corre-

sponding dynamic system is asymptotically stable, consistent with the prediction in Section 3.2. Consid-

ering the fact that the original dynamic system is actually not stable, it can be concluded that

significant numerical errors are caused by adopting this simplification. Therefore, generally, omitting the in-

plane displacements of the midplane of the composite plate cannot be justified in the dynamic stability
analysis.



Table 1

Complex eigenvalues of the piezoelectric composite plate

Gains 0 500 1000 2000

k1 142.21i )1.64+142.25i )3.27+142.37i )6.53+142.83i
k2 403.14i 0.92+403.06i 1.79+402.83i 3.3+402.02i

k3 844.06i )2.06+844.59i )3.49+845.85i )4.29+848.49i
k4 1204.22i )63.77+1212.44i )124.38+1238.89i )195.94+1346.13i
k5 1394.49i 0.84+1397.63i 1.56+1397.99i 2.44+1399.02i
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Fig. 3. Time history of the input voltage of the actuator of the piezoelectric composite plate.
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4.2. Stable negative-velocity feedback control systems by adjusting the configurations

To overcome dynamic instability, the system has to be re-designed. Without changing the output

feedback control law in Eq. (9), one alternative design is to use an approximately collocated sensor/actuator

pair by bonding the actuator layer on the bottom surface of the sensor layer, as shown in Fig. 6. The time

histories of the tip deflection at point A and the input voltage of the piezoelectric actuator of this altered

dynamic system are shown in Figs. 7 and 8, respectively. When the control gain is zero, the peak values of

tip deflection of this system are a bit larger than those of the original system shown in Fig. 2, due to the
dominant reduction of the bending stiffness of the piezoelectric sensor layer with respect to the shifted new

midplane. This observation can be further verified by the differences of the natural frequencies shown in

Tables 1 and 2 when the corresponding control gain is zero. It can be seen that the natural frequencies of



Fig. 4. Time history of the deflection of the tip point A of the piezoelectric composite plate without in-plane displacements.
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this altered system are smaller than those of the original system, which suggests that a stiffness reduction
has been caused by this alteration. It can also be seen that the dynamic system will return to its equilibrium

point (
_eUUeUU ¼ 0) in about 1.5 s with the moderate control gains 500, 1000 and 2000. Higher control gain

results in faster decay of the dynamic response. This suggests that the altered dynamic system is asymp-

totically stable since the sensor/actuator pair is approximately collocated. Further verification of the dy-

namic stability can be done by finding the complex eigenvalues in Eq. (27). Table 2 only presents the

complex eigenvalues of the first five modes of this altered dynamic system. All the complex eigenvalues are

with negative real parts and thus the asymptotic stability is guaranteed.

Without changing the output feedback control law in Eq. (9), another alternative design is to use a
symmetric, rather than antisymmetric, angle-ply composite laminate [)45�/45�/45�/)45�], as shown in Fig.

9. The time histories of the tip deflection at point A and the input voltage of the piezoelectric actuator of this

altered dynamic system are shown in Figs. 10 and 11, respectively. When the control gain is zero, the peak

values of tip deflection of this system are similar to those of the original system shown in Fig. 2, due to the

fact that neither the additional stretching–bending coupling effect of the antisymmetric balanced regular

angle-ply composite substrate [)45�/45�/)45�/45�] nor the additional bending–twisting coupling effect of the
symmetric balanced angle-ply composite substrate [)45�/45�/45�/)45�] is significant (Reddy, 1997). This

observation can be further verified by the similarities of the natural frequencies shown in Tables 3 and 2
when the corresponding control gain is zero. It can be seen that the natural frequencies of this altered

system are close to those of the original system and the maximum error is 2.1%, which suggests that this

alteration does not affect the stiffness significantly. It can also be seen that the dynamic system will return

to its equilibrium point (
_eUUeUU ¼ 0) in about 1.5 s with moderate control gains. It suggests that this altered



Fig. 5. Time history of the input voltage of the actuator of the piezoelectric composite plate without in-plane displacements.
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Fig. 6. Cross-section of the piezoelectric composite plate of the altered dynamic system with an imperfectly collocated sensor/actuator

pair.
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dynamic system is also asymptotically stable since the stretching–bending coupling effect of the composite

laminate has been eliminated by using the symmetric angle-ply sequence and thus the in-plane displace-
ments of the midplane would become negligible. It can be further verified by solving the complex eigen-

values in Eq. (27). Table 3 presents the complex eigenvalues of the first five modes of this altered dynamic



Table 2

Complex eigenvalues of the altered dynamic system with an imperfectly collocated sensor/actuator pair

Gains 0 500 1000 2000

k1 134.93i )1.06+134.95i )2.11+135.01i )4.21+135.26i
k2 399.24i )0.23+399.25i )0.46+399.29i )0.88+399.46i
k3 797.28i )1.44+797.53i )2.64+798.2i )3.97+800.09i
k4 1162.12i )41.87+1166.86i )82.52+1181.54i )148.03+1243.97i
k5 1374.43i )2.47+1374.27i )4.91+1373.79i )9.58+1371.77i
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Fig. 7. Time history of the deflection of the tip point A of the altered dynamic system with an imperfectly collocated sensor/actuator

pair.
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system, where all the complex eigenvalues are with negative real parts and thus the asymptotic stability can
be guaranteed.
4.3. Stable negative-velocity feedback control based on the second Lyapunov’s stability criteria

The above two altered dynamic system designs show that without changing the output feedback control

law, the dynamic stability can also be achieved by either bonding the sensor/actuator pair together to

construct an approximate collocation or changing the ply stacking sequence of the composite substrate to

eliminate the stretching–bending coupling effect of the composite laminate. However, these two design
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Fig. 8. Time history of the input voltage of the actuator of the altered dynamic system with an imperfectly collocated sensor/actuator

pair.
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methods may be problem dependent. Since Lyapunov�s second stability criteria may not be completely
satisfied, there is no guarantee that all the resulting dynamic systems based on these two methods be stable.

More importantly, the design procedure would become computationally more expensive, if not impossible,

for a larger system because of the need to calculate all the complex eigenvalues. To reduce the computa-
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Fig. 10. Time history of the deflection of the tip point A of the dynamic system with a symmetric angle-ply composite substrate.
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tional cost and/or to avoid the numerical difficulties involved, the proposed robust controller in Eq. (28) can

be used for vibration control of the piezoelectric composite plate. The time histories of the tip deflection at

point A and the input voltage of the piezoelectric actuator of this altered dynamic system are shown in Figs.

12 and 13, respectively. With moderate control gains this dynamic system will return to its equilibrium

point in about 1.5 s. Higher control gain yields faster decay in the response. This observation also suggests
that the dynamic system is stable, as confirmed by the complex eigenvalues shown in Table 4, in which only

the first five eigenvalues are listed. As expected, when the control gain is zero, the natural frequencies of this

altered dynamic system (Table 4) are the same as that of the original dynamic system (Table 1) since the

difference between them is the control law only. For the demonstrative purpose only, it can be found that all

the eigenvalues of this altered system are with negative real parts when the control gain is larger than zero.

This system with a state feedback control law is therefore asymptotically stable.
5. Conclusions

This paper demonstrates the importance of using an appropriate FE model and an actually stable

negative-velocity feedback control law to perform the vibration control of piezoelectric composite plates.

Based on the second Lyapunov�s stability criteria by using a proposed Lyapunov�s energy functional, it is

found that the imperfect collocation of piezoelectric sensor/actuator pairs is not sufficient for dynamic
stability in general and that ignoring the in-plane displacements of the midplane of the composite plate may
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Fig. 11. Time history of the input voltage of the actuator of the dynamic system with a symmetric angle-ply composite substrate.

Table 3

Complex eigenvalues of the altered dynamic system with a symmetric angle-ply composite substrate

Gains 0 500 1000 2000

k1 142.46i )1.77+142.51i )3.55+142.66i )7.06+143.26i
k2 398.31i )1.5+398.43i )2.95+398.79i )5.5+400.1i
k3 849.47i )1.68+849.91i )2.82+850.95i )3.39+853.08i
k4 1166.13i )59.12+1173.92i )116.23+1199.13i )188.88+1307.31i
k5 1423.92i )3.04+1423.73i )6.08+1423.15i )11.98+1420.64i
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cause significant numerical errors, leading to incorrect stability conclusions. Using a proposed state feed-
back law and the Lyapunov�s energy functional to perform stability analysis, dynamic stability can be

guaranteed. This is a cost-efficient and effective alternative to performing a complex eigen-analysis espe-

cially for large systems. Theoretical considerations are confirmed by numerical results, where the signs of

the real parts of all the complex eigenvalues are used to determine the dynamic stability. It is also shown

numerically that asymptotically stable control systems may be obtained by bonding the piezoelectric sensor/

actuator pairs together or changing the ply stacking sequence of the composite substrate.
Appendix A

As discussed in (Wang, 2002), Nu is the matrix of displacement shape functions; q the mass density; Xi

the volume of ith element; Bu the strain-displacement matrix; B/ the electric field-potential matrix; Pb, Ps
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Fig. 12. Time history of the deflection of the tip point A of the piezoelectric composite plate using the robust controller.
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and Pi the body, surface and ith concentrated load vectors, respectively; q the surface charge density vector;

Cs the external mechanical loading surface, and C/ the external electrical loading surface.
Muu ¼
X
i

Z
Xi

NT
uqNu dX; ðA:1Þ

Kuu ¼
X
i

Z
Xi

BT
uCBu dX; ðA:2Þ

B/ ¼ B/s 0

0 B/a

� �
; Ksu ¼ KT

us; Kau ¼ KT
ua; ðA:3Þ

Kus ¼
X
i

Z
Xi

BT
u e

TB/s dX; ðA:4Þ

Kua ¼
X
i

Z
Xi

BT
u e

TB/a dX; ðA:5Þ



0 0.5 1 1.5
1

0.5

0

0.5

1

Time(second)

In
pu

t V
ol

ta
ge

(V
ol

t)
Control Gain=0

0 0.5 1 1.5
-2

-1

0

1

2

3

Time(second)

In
pu

t V
ol

ta
ge

(V
ol

t)

Control Gain=500

0 0.5 1 1.5
-4

-2

0

2

4

6

Time(second)

In
pu

t V
ol

ta
ge

(V
ol

t)

Control Gain=1000

0 0.5 1 1.5
-8

-6

-4

-2

0

2

4

6

8

Time(second)

In
pu

t V
ol

ta
ge

(V
ol

t)

Control Gain=2000

Fig. 13. Time history of the input voltage of the actuator of the piezoelectric composite plate using the robust controller.

Table 4

Complex eigenvalues of the altered dynamic system with a robust feedback controller

Gains 0 500 1000 2000

k1 142.21i )1.44+142.24i )2.88+142.35i )5.74+142.77i
k2 403.14i )0.76+403.19i )1.5+403.36i )2.82+403.98i
k3 844.06i )1.8+844.46i )3.16+845.47i )4.22+847.85i
k4 1204.22i )55.77+1210.99i )109.95+1232.5i )188.16+1325.1i
k5 1397.49i )1.21+1397.32i )2.3+1396.83i )3.75+1295.26i
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Kss ¼
X
i

Z
Xi

BT
/sgB/s dX; ðA:6Þ

Kaa ¼
X
i

Z
Xi

BT
/agB/a dX; ðA:7Þ

F ¼
Z
X
NT

uPb dXþ
Z
Cs

NT
uPs dCs þ

X
i

NT
uiPi; ðA:8Þ

Q ¼ �
Z
C/

NT
/qdC/: ðA:9Þ
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Appendix B
Ax
l ¼ e31

Z 1

�1

Z 1

�1

oNul

ox
dndg; ðB:1Þ
Ay
l ¼ e32

Z 1

�1

Z 1

�1

oNul

oy
dndg; ðB:2Þ
in which l ¼ 1; 2; . . . ; 8, e31 and e32 are the dielectric constants of the piezoelectric materials, x and y the

spacial coordinates, n and g the natural coordinates (Wang, 2002).
ff a
l g ¼ Ax

l Ay
l 0 za0A

x
l za0A

y
l½ �T ; ðB:3Þ

½ksl � ¼ Ax
l Ay

l 0 zs0A
x
l zs0A

y
l½ �: ðB:4Þ
The system matrix A, input matrix B and output matrix C are given by
A ¼ 0 I

�M�1
uu K0 0

� �
; ðB:5Þ
B ¼ 0
M�1

uu Kua

� �
; ðB:6Þ

C ¼ 0 GcKsu½ �: ðB:7Þ
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